M-math 2nd year Back paper Exam Subject: Fourier Analysis

Time: 3.00 hours

Max.Marks 45.

1. Let $\psi(x) := I_{[0,\frac{1}{2})}(x) - I_{[\frac{1}{2},1)}(x)$, where I_A is the indicator function of the set A. Let $\psi_{jk}(x) := 2^{\frac{j}{2}}\psi(2^jx-k), j,k \in \mathbb{Z}$. Show that $\{\psi_{jk}\}$ is an orthonormal set in $L^2(\mathbb{R})$.

2. a). Define the periodisation $k_t(x)$ of the heat kernel $p_t(x) := \frac{1}{(4\pi t)^{\frac{d}{2}}} e^{-\frac{|x|^2}{4t}}, x \in \mathbb{R}^d$ and for $f \in L^1(T^d)$ compute the Fourier series of the convolution $f * k_t(x)$ in terms of $\hat{f}(n)$.

b) In a) does the Fourier series converge to $f * k_t(x)$? Justify your answer. (10 +5)

3. a) Let $f \in L^1(T^d)$ and extend f to \mathbb{R}^d by $f(x+ke_i)=f(x), x \in T^d, k \in \mathbb{Z}$ and $e_i=(0,\cdots,1,\cdots,0), i=1,\cdots,d$ are the basis vectors in \mathbb{R}^d . Show that $\int_{T^d} f(x-y) dx = \int_{T^d} f(x) dx$.
b) Does f belong to $L^1(\mathbb{R}^d)$? Prove your answer. (10 + 5)

4. Let f and ϕ be as in the Paley-Weiner theorem i.e.

$$f(z):=rac{1}{(2\pi)^{rac{d}{2}}}\int \phi(t)e^{-iz\cdot t}dt,\;\;z\in\mathbb{C}^d$$

where $\phi \in C_c^{\infty}(\mathbb{R}^d)$ and $supp(\phi) \subset B(0,r)$. Show that

$$|f(z)| \le \gamma_N (1+|z|)^{-N} e^{r|Im(z)|},$$

for $z \in \mathbb{C}^d$, $N \ge 1$ an integer and γ_N a constant depending on N. (10)

5. a) Let $0 \le r < 1$ and $Q_r(\theta) := \frac{2r\sin\theta}{1+r^2-2r\cos\theta}, \theta \in (-\pi,\pi)$ be the conjugate Poisson kernel. Show that $Q_r(\theta) = -i\sum_{n \in \mathbb{Z}} sgn(n)r^{|n|}e^{in\theta}$.

b) Show further that for $f \in L^2(-\pi, \pi)$, $\lim_{r \uparrow 1} Q_r f(\theta) = H f(\theta)$, where $H: L^2 \to L^2$ is the Hilbert transform. (10)